Huffman Code (C) 2023 by Karl Kechele

A Huffman Code is:

- a prefix code: no code is a prefix of another code

- optimal: shortest possible code, best compression of data
- depends on the probability distribution of symbols

- used for lossless data compression

In the app you can see 3 tabs and 4 buttons:

- a tab,Text’ with the original text

- a tab ,Huffman Code’ with the generated Huffman code and the code tree
- a tab ,Encoded Text’ with the encoded text

- a button ,Encode’ to encode the text in tab ,Text’

- a button ,Decode’ to decode the text in tab ,Encoded Text’

- a button ,Copy‘ to copy the active tab to clipboard

- a button ,New’ to clear all tabs

In the app you can do:
- edit a text in , Text’ and click ,Encode’ to encode the text
- edit the encoded text in ,Encoded Text’ and click ,Decode’ to decode the text
- change the text in ,Text’ and encode it again with the last Huffman coding by clicking ,Encode’
- delete the Huffman coding by clicking ,Clear” in the ,Huffman Code‘-tab
-> the Huffman code will be generated again after you click ,Encode’ next time
- have a look for the Huffman code in tab ,Huffman Code’:
first you can see the codes of the characters, then the distribution and finally the coding tree
Codes: ,char‘=<bitcode>
Distribution: (can be used in ,Text’ for only get the Huffman code)
;=chl,ch2,ch2,... ->list of characters
nl,n2,n3,... ->list of counts of the characters above
Example: line 1: ;=a3,b,c,d line2:12,4,259 means: 12xa, 4x b, 25x ¢, 9x d
Code Tree: #node ¢(weight) : 0.#next 1.#next ->a node with following nodes #next
or #node char(weight) : ->an end node for a character ,char’
weight : count of occurrence

See also the examples on the following site.

The rate will be calculated:

rate : count of necessary bits at Huffman coding in relation to a 7bit-ASCIl coding
rate = <count of Huffman coding bits> / <count of 7bit-ASCII bits> (in percent)
<count of Huffman coding bits> : count of bits in tab ,Encoded Text’

<count of 7bit-ASCII bits> = <count of characters in tab ,Text> * 7 (bits per character)

Example 1: normal usage

Editin,Text"
this is an example text

Press ,Encode’ and have a look for the ,Huffman Code’:
;Huffman Code (1.5) (C) 2023 by Karl Kechele
;'char'=Bitcode

'x'=000

'h'=0010

'n'=0011

'm'=0100

'p'=0101

't'=011

'e'=100

''=1010

'i'=1011

''=110

's'=1110

'a'=1111

;Distribution

;=x,h,n,m,p,t,e,l,i,,s,a

2,1,1,1,1,3,3,1,2,4,2,2

;Code Tree: #node ¢(weight) : 0.#next 1.#next
;or #node char(weight) :

#22 ¢(23) : 0.#20 1.#21

#20 «(9) : 0.#16 1.#17

#16 ¢(4) : 0.#8 1.#12

#8 x(2) :

#12 «(2) : 0.0 1.#1

#O h(1) :

#1 n(1) :

see in ,Encoded Text"
01100101011111011010111110110111100111101000001111010001011010100110011100000011

Example 2: define a distrubution (only for generating a Huffman Code)

Editin ,Text”: (the definition means: a text with 12x a, 4x b, 25x ¢, 9x d)
;=a,b,c,d
12,4,25,9

Press ,Encode’ and have a look for the ,Huffman Code’

